Lesson Plan for BSc 2nd Semester

Electricity, Magnetism and EM Theory

Month	Topics
January	Gradient of a scalar and its physical significance, Line, Surface and Volume integrals of a vector and their physical significance, Flux of a vector field, Divergence and curl of a vector and their physical significance, Gauss's divergence theorem, Stoke's theorem. Conservative nature of Electrostatic Field, Electrostatic Potential, Potential as line integral of field, potential difference Derivation of electric field E from potential as gradient. Derivation of Laplace and Poisson equations. Electric flux, Gauss's Law, Differential form of Gauss's law and applications of Gauss's law. Mechanical force of charged surface, Energy per unit volume.
February March	 Biot-Savart law and its simple applications: straight wire and circular loop, Current Loop as a Magnetic Dipole and its Dipole Moment, Ampere's Circuital Law and its applications to (1) Solenoid and (2) Toroid, properties of B: curl and divergence, Force on a dipole in an external field, Electric currents in Atoms, Electron spin and Magnetic moment, types of magnetic materials, Magnetization vector (M), Magnetic Intensity (H), Magnetic Susceptibility and permeability, Relation between B, H and M, Electronic theory of dia and paramagnetism, Domain theory of ferromagnetism (Langevin's theory), Cycle of Magnetization- B-H curve and hysteresis loop: Energy dissipation, Hysteresis loss and importance of Hysteresis Curve Electromagnetic induction, Faraday's laws of induction and Lenz's Law, Self-inductance Mutual inductance, Energy stored in a Magnetic field, Derivation of Maxwell's equations
	Displacement current, Maxwell's equations in differential and integral form and integral
	physical significance. Electromagnetic waves, Transverse nature of electromagnetic wave, energy transported be electromagnetic waves, Poynting vector, Poynting's theorem. Propagation of Plan electromagnetic waves in free space & Dielectrics
	1 A Janaity Lightrical Conductivity and Uning have received
pril	Kirchhoff's laws for D.C. networks, Network incorems. The version of the second
	theorem, Superposition theorem. A resonance circuit, Phasor, Complex Reactance and Impedance, Analysis for RL, RC and LC Circuits, Series LCR Circuit: (1) Resonance, (2) Power Dissipation (3) Quality Factor
	and (4) Band Width, Parallel LCR Circuit.

Rol-vier) (Dr Rolivier)

Lesson Plan for BSc 4th Semester

Wave and Optics I

Month	Topics
January	Topics Polarisation by reflection, refraction and scattering, Malus Law, Phenomenon of double refraction, Huygen's wave theory of double refraction (Normal and oblique incidence), Analysis of polarized Light. Nicol prism, Quarter wave plate and half wave plate, production and detection of (i) Plane polarized light (ii) Circularly polarized light and (iii) Elliptically polarized light. Optical activity, Fresnel's theory of optical rotation, Specific rotation, Polarimeters (half shade and Biquartz).
	Matrix methods in paraxial optics, effects of translation and refraction, deriverse lens and thick lens formulae, unit plane, nodal planes, system of thin lenses
February	Optical fiber, Critical angle of propagation, Mode of Propagation, Acceptance angle, Fractional refractive index change, Numerical aperture, Types of optics fiber, Normalized frequency, Pulse dispersion, Attenuation, Applications, Fiber optic Communication,
	Advantages
March	Fourier theorem and Fourier series, evaluation of Fourier coefficient, importance and limitations of Fourier theorem, even and odd functions, Fourier series of functions f(x) between (i) 0 to 2pi, (ii) –pi to pi, (iii) 0 to pi, (iv) –L to L, complex form of Fourier series.
	Application of Fourier theorem for analysis of complex waves: solution of triangular and rectangular waves , half and full wave rectifier outputs, Parseval identity for Fourier Series, Fourier integrals Fourier transforms and its properties, Application of
	Fourier transform (i) for evaluation of integrals, (ii) for solution of ordinary differentia
	equation.

Rof-vie (Dr Rofiv les)

Lesson Plan for BSc 4th Semester

Statistical Physics

	Topics Topics A- priori
Month	Macroscopic systems, Probability, statistical promination possessing
January	Probability, combinations provide and any number of coins, terms, terms indistinguishable minimum probability, Tossing of 2,3 and any number of coins, terms, terms dynamical combinations, distributions of N (for N= 2,3,4) distinguishable and indistinguishable particles in two boxes of equal size, Micro and Macro states, Thermo dynamical particles in two boxes of equal size, Statistical fluctuations, general distribution probability, Constraints and Accessible states, Statistical fluctuations, general distribution of distinguishable particles in compartments of different sizes, Condition of equilibrium of distinguishable particles in compartments of different sizes, Condition of equilibrium of distinguishable particles in compartments of different sizes.
February	Postulates of statistical physics, Phase opena, kinds of statistics, basic approach in three statistics. M. B. statistics applied to an ideal gas in equilibrium- energy distribution law including evaluation of σ and β , speed distribution law & velocity distribution law. Expression for average speed, r.m.s. speed, distribution law & velocity, most probable energy & mean energy for Maxwellian
	distribution.
1arch	statistics to Planck's radiation law B.E. gas, Degeneracy, Fermi energy and Fermi Dirac energy distribution law, F.D. gas and Degeneracy, Fermi energy and Fermi temperature, Fermi Dirac energy distribution law, Fermi Dirac gas and degeneracy, Fermi energy and Fermi temperature, Fermi Dirac energy distribution law for electron gas in metals, Zero point energy, Zero point pressure and average speed of electron gas, Specific heat anomaly of metals and its solution. M.B. distribution as a limiting case of
	B.E. and F.D. distributions, Comparison of three statistics. Dulong and Petit law and its derivation from classical physics. Specific heat at lo
	Dulong and Petit law and its derivation from classical physical operators temperature, Einstein theory of specific heat, Criticism of Einstein theory, Debye model specific heat of solids, success and shortcomings of Debye theory, comparison of Einstein
	and Debye theories.

(Dr Rojiv less)

Lesson Plan for BSc 6th Semester

Solid State and Nano Physics

Month	Topics
January	Crystalline and glassy forms, liquid crystals, crystal structure, periodicity, lattice and basis, crystal translational vectors. Unit cell and Primitive Cell, symmetry operations for a two andf three dimensional crystal, Bravais lattices in two and three dimensions. Crystal planes and Miller indices, Interplaner spacing, Crystal structures of Zinc Sulphide, Sodium Chloride and Diamond.
February	X-ray diffraction, Bragg's Law and experimental X-ray diffraction methods. K-space and reciprocal lattice and its requirement and physical significance, reciprocal lattice vectors, reciprocal lattice to a simple cubic lattice, b.c.c. and f.c.c.
March	Experimental survey of superconductivity, Super conducting systems, High Tc Super conductors, Isotopic Effect, Critical Magnetic Field, Meissner Effect, London equations and explanation of superconductivity, Type I and Type II Superconductors, BCS Theory of Superconductivity, Flux quantization, AC and DC Josephson Effect, Practical Applications of superconductivity.
	Length scale, Importance of Nano-scale and technology, History of Nano-technology, Benefits and challenges in molecular manufacturing. Molecular assembler concept, Understanding advanced capabilities. Vision and objective of Nano-technology, Nanotechnology in different fields, Automobile, Electronics, Nano-biotechnology, Materials, Medicine.

Cor Corives

Lesson Plan for BSc 6th Semester

Atomic and Molecular Spectroscopy

	Topics
Month January	Topics Early observations, emission and absorption spectra, spectrum of Hydrogen, Bohr atomic model, spectra of Hydrogen atom, explanation of spectral series in Hydrogen atom, spectral series in absorption spectra, correction of finite nuclear mass, variation in Rydberg constant due to finite mass, short comings of Bohr's theory, Wilson sommerfeld Rydberg constant due to finite mass, short comings of Bohr's model, Sommerfeld, Short correspondence principle, Sommerfeld's extension of Bohr's model, Sommerfeld, Short comings of Bohr-Sommerfeld theory, Vector atom model; space quantization, electron spin, coupling of orbital and spin angular momentum, spectroscopic terms and their notation, quantum numbers associated with vector atom model,transition probability and selection rules.
February	notation, quantum numbers and selection rules. Orbital magnetic dipole moment, behavior of magnetic dipole in external magnetic field; Larmors' precession and theorem. Penetrating and Non-penetrating orbits, Quantum defect, spin orbit interaction energy of the single valance electron, spin orbit interaction defect, spin orbit interaction energy of the single valance electron, spin orbit interaction for penetrating and non-penetrating orbits. quantum mechanical relativity correction, for penetrating and non-penetrating orbits. quantum mechanical relativity correction, for penetration fine spectra, Main features of Alkali Spectra and their theoretical Hydrogen fine spectra, Main features of Alkali Spectra and their theoretical interpretation, term series and limits, Rydeburg-Ritz combination principle, Absorption spectra of Alkali atoms, Intensity rules for doublets, comparison of Alkali spectra and
Aarch	Hydrogen spectrum. Vector model for two valance electron atom: application of spectra. Coupling Schere or Russell – Saunders Coupling Scheme and JJ coupling scheme, Interaction energy coupling, Lande interval rule, Pauli principal and periodic classification of the el Interaction energy in JJ Coupling, equivalent and non-equivalent electrons, Two electron system-spectral terms of non-equivalent and equivalent electrons, con of spectral terms in L-S And J-J coupling. Hyperfine structure of spectral line
oril	origin; isotope effect, nuclear spin. Normal and anomalous Zeeman Effect, Experimental set-up for studying Zeeman effect, Normal and Quantum mechanical explanation of normal Zeeman effect, Explanation of Classical and Quantum mechanical explanation, Zeeman pattern of D1 and D2 lines of Na- anomalous Zeeman effect(Lande g-factor), Zeeman pattern of D1 and D2 lines of Na- atom, Paschen-Back effect of a single valence electron system. Weak field Stark effect

Log-ve (Dr Rogiv ba)