Shi	i Guru Teg l	bahadur Ji Government College, Taraori(Karnal)
epartme	int: PHYSI	Cl "Class: 2nd SEM
ubject:	PH. YSICC	Lesson Plan
Month	Week 1	
Fe6	Week 2	Gradient & ets physical Significance, Line, Surjace & Volume integrals, Divergence & Curl & their physicals
	Week 3	of electrostate hed. Elednostatic potentials.
	Week 4	Derivation a electric Held from potential, Electric Plux, Gauss's Can, Dillerendial form of Grass Can Lapplications.
March	Week 1	Biot-Sovration and ets applications-Straightwiret Circular loop, current loop or magnetic dipole, Amperois Circuit I am applications
	Week 2	Force on a dipole in external field, Electric cyrrends in atoms, Electron som and major moment.
	Week 3	Mained intensity, Susceptibility, permeability.
	Week 4	Leladion between B. Hand M. Theory of dio, para and benomornedism, B-H Curve, Hystersis loss.
April	Week 1	Electro Majnetic Induction Faraday's laws and Lengts law, Sel Inductance mutual inductance Energy oteral in magnetic field Maxwell's equations in differents
	Week 2	Displacement Current, Howard Significance.
	Week 3	EM waves, Transverse nadure of EM waves, Paynting Vector, Paynting This propagation of EM waves in ree spaces
	Week 4	Electric Current & Cyrrent density, Electrical Conductivity & Ohmis Ian, Kircholl's law for DC.
May	Week 1	The venin's Thm, Norton Thm, superposition The
	Week 2	Kesonance circuit, Amilysis of RL, RC and Le Circuids, Series & parallel resonance circuits;
	Week 3	1) Lesonance 1) Power dustipation 111) quality factor 1V) band width
	Week 4	

(Pr Rapoks)

Sh	ri Guru Teg	bahadur Ji Government College, Taraori(Karnal)
Departm	ent: PHYSI	Class: Q SEM
	PHYSICS	Lesson Plan
Month	Week 1	
Fe6	Week 2	Young's double Slit experiment, Coherent Sources, Conditions of interference, Fresnel's biprism.
	Week 3	Application of bipnsm to deter mine wavelength and thickned of mica sheet, phase change on reflection. Parollel thinging,
	Week 4	Interperence due to transmilled light and reflected light, week
March	Week 1	Pillraction at a Straiph edge, rectangular slit and circular
	Week 2	Pill rachon de to narrow wire, Suple Sit diffraction
	Week 3	double sit dillocation, plane foansmission grading
	Week 4	of the scale, his persive power of garding
Apnı	Week 1	tologization by reflection, refraction and stationy,
	Week 2	Pouble refraction, Huygen's wave theory of double reportion
	Week 3	Analysis of polasized light, Nicol poism, ANPA
	Week 4	Production and detection of plane polarized, circularly folarized, elliphally polarized lipht, ophical activity.
May	Week 1	Specific rotation & Palarimeters-hall Shade & biguards
	Week 2	Baric Concept of a Gopton, employed, on plipadion of radiation, population inversion, Main Components of loses
	Week 3	Characteristics of lasor, the-Ne and Log laver, optical files, acceptance after NA
	Week 4	Single mode & multimode files, Advantage & disadvantage, Application of biser, files ophe sendors

(Or Kalings)

Shri Guru Teg bahadur Ji Government College, Taraori(Karnal) Department: PHYSICS Class: BSc 6th SEM Subject: Solid State and Nano Physics **Lesson Plan** Month Crystalline and glassy forms, liquid crystals, crystal structure, periodicity, lattice Week 1 and basis crystal translational vectors. Unit cell and Primitive Cell, symmetry operations for Week 2 **JANUARY** a two andf three dimensional crystal Bravais lattices in two and three dimensions. Crystal planes and Miller indices, Week 3 Interplaner spacing Crystal structures of Zinc Sulphide, Sodium Chloride and Diamond, Week 4 Class Test **FEBRUARY** X-ray diffraction, Bragg's Law and experimental X-ray diffraction methods, Week 1 K-space and reciprocal lattice and its requirement and physical significance Week 2 reciprocal lattice vectors, reciprocal lattice to a simple cubic lattice, b.c.c. and Week 3 f.c.c., Class Test Experimental survey of superconductivity, Super conducting systems Week 4 **MARCH** High Tc Super conductors, Isotopic Effect, Critical Magnetic Field, Meissner Week 1 Effect, London equations and explanation of superconductivity, Type I and Type II Week 2 Superconductors BCS Theory of Superconductivity, Flux quantization, Week 3 AC and DC Josephson Effect, Practical Applications of superconductivity, Week 4 Class Test **APRIL** Length scale, Importance of Nano-scale and technology, History of Nano-Week 1 technology Benefits and challenges in molecular manufacturing. Molecular assembler Week 2 concept, Understanding advanced capabilities Vision and objective of Nano-technology, Nanotechnology in different fields Week 3 Automobile, Electronics, Nano-biotechnology, Materials, Medicine, Week 4 Class Test

(Or Rolling less)

SIII	i Guru Teg	bahadur Ji Government College, Tara	ion(Karnar)	
Departme	nt: PHYSICS		Class: BSc 6th SEM	
Subject: A	tomic and N	1olecular Spectroscopy	Lesson Plan	
Month	Week 1	Early observations, emission and absorption spec Bohr atomic model, spectra of Hydrogen atom	tra, spectrum of Hydrogen	
JANUARY	Week 2	explanation of spectral series in Hydrogen atom, spe spectra, correction of finite nuclear mass, variation in finite mass		
	Week 3	short comings of Bohr's theory, Wilson sommerfeld quantization rule, de-Broglie interpretation of Bohr quantization law, Bohr's correspondence principle, Sommerfeld's extension of Bohr's model, Sommerfeld model		
	Week 4	Short comings of Bohr-Sommerfeld theory, Vector atom model; space quantization, electron spin, coupling of orbital and spin angular momentum, spectroscopic terms and their notation, quantum numbers associated with vector atom model,transition probability and selection rules, Class Test		
FEBRUARY	Week 1	Orbital magnetic dipole moment, behavior of m magnetic field; Larmors' precession and theorem,	nagnetic dipole in external	
	Week 2	Penetrating and Non-penetrating orbits, Quantum defect, spin orbit interaction energy of the single valance electron, spin orbit interaction for penetrating and non-penetrating orbits. quantum mechanical relativity correction,		
	Week 3	Hydrogen fine spectra, Main features of Alkali Spectra and their theoretical interpretation, term series and limits, Rydeburg-Ritz combination principle,		
	Week 4	Absorption spectra of Alkali atoms, Intensity rules for doublets, comparison of Alkali spectra and Hydrogen spectrum, Class Test		
MARCH	Week 1	Application of spectra. Coupling Schemes-LS or Russell – Saunders Coupling Scheme and JJ coupling scheme, Interaction energy in L-S coupling		
	Week 2	Lande interval rule, Pauli principal and periodic classification of the elements. Interaction energy in JJ Coupling		
	Week 3	equivalent and non-equivalent electrons, Two valance electron system-spectral terms of non-equivalent and equivalent electrons		
	Week 4	comparison of spectral terms in L-S And J-J coupling. spectral lines and its origin; isotope effect, nuclear sp	Hyperfine structure of in, Class Test	
APRIL	Week 1	Normal and anomalous Zeeman Effect, Experimental effect	d anomalous Zeeman Effect, Experimental set-up for studying Zeeman	
	Week 2	Classical and Quantum mechanical explanation of normal Zeeman effect, Explanation of anomalous Zeeman effect(Lande g-factor),		
	Week 3	Zeeman pattern of D1 and D2 lines of Na-atom, Paschen-Back effect of a single valence electron system		
	Week 4	Weak field Stark effect of Hydrogen atom, Class Test		